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Need for Reliable and Safe Electric Vehicles

The Indian electric vehicle (EV) market is experiencing significant growth
and is projected to be a major player in the global EV landscape.

Passenger EV production in India 2019-2024
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Source: S&P Global Mobility.
© 2025 S&P Global.

Source: https://www.custommarketinsights.com/report/india-electric-vehicle-market/
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Common EV Types

Eg: Mitsubishi Outlander (PHEV)

Source: https://www.evfiresafe.com/what-is-an-ev



What 1s inside an EV?

, Traction battery

Motor controller

Electric motor

Telly roll’
Positive terminal

Anode ——J 7

Metal case
¢ (usually
aluminium)

Separator
Looking inside a
ot Battery Cell
a .
e o :'y Battery modules making a
N B egatlve termina
Electrolyte

pack placed inside EV
Source: https://www.eVfiresafe.com/ev-hv-cable-components 6



Battery Performance Optimization Requirement

Source: Siemens Software, accessed 2023.



Data driven vs Physical models

e Datadriven models are preferred over

physical models. e
e Physical models offer slightly more accuracy hy
but struggle in real time prediction due to
their complexity =
e Datadriven methods are easier to 5
implement and use in a wide variety of cases Ryposhiess
Layer 2, Layer 3,
hidden hidden

Layer 1,
input data

Source: Sheehan, Sara & Song, Yun. (2016). Deep Learning for Population Genetic Inference. PLOS
Computational Biology. 12. €e1004845. 10.1371/journal.pcbi.1004845.



Our approach: taking the best of both worlds

Data in Supervised
vs. Unsupervised Learning

Machine Domain
Supervised Learning Learning knowledge

Physics Inspired Machine Learning:
Using physical system
understanding to aid ML
using pre-established system

L=y Unlabeled Data mathematical models

Hybrid Model that
Includes Supervised

Unsupervised Learning Unlabeled Data




Methodology for Electrical Battery Model

Step 1: Analysis phase Step 2: Synthesis phase
Extracting ECM parameters Building the Digital Twin
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Source: R. D. Fonso, R. Teodorescu, C. Cecati and P. Bharadwaj, "A Battery Digital Twin From Laboratory Data Using Wavelet
Analysis and Neural Networks," in IEEE Transactions on Industrial Informatics, vol. 20, no. 4, pp. 6889-6899, April 2024




Open Circuit Voltage Estimation

Target Voltage Training Data
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(a) Target voltage training data

SoH Input Training Data
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Input data vector index

(b) SoH input training data

SoC Input Training Data

3 4
Input data vector index

(c) SoC input training data

Open Circuit Voltage (OCV)

Source: A Battery Digital Twin Based on Neural
Network for Testing SoC/SoH Algorithms by RD
Fonso and P Bharadwaj et al., IEEE PEMC 2022.




Use of Pulsed Data for Internal Impedance Est.

Pulsed voltage at different cell age Z Nyaquist at different SoH
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Source: R. D. Fonso, R. Teodorescu, C.
Cecati and P. Bharadwaj, "A Battery
Digital Twin From Laboratory Data
Using Wavelet Analysis and Neural
Networks," in IEEE Transactions on
Industrial Informatics, vol. 20, no. 4, pp.
6889-6899, April 2024.




Equivalent Circuit Model for LIB

Resistance R, Resistance R,
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Source: R. D. Fonso, R. Teodorescu, C. Cecati and P. Bharadwaj, "A Battery Digital Twin From Laboratory Data Using Wavelet Analysis and
Neural Networks," in IEEE Transactions on Industrial Informatics, vol. 20, no. 4, pp. 6889-6899, April 2024.




Output Voltage

T

Results for Electrical Qutput

Voltage (V)

lime

(a) BDT output voltage, SoH=1

Output Voltage
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Source: R. D. Fonso, R.
(b) BDT output voltage, SoH=0.9

Teodorescu, C. Cecati and P.
Bharadwaj, "A Battery Digital
Twin From Laboratory Data
Using Wavelet Analysis and
Neural Networks," in IEEE
Transactions on Industrial
Informatics, vol. 20, no. 4, pp.
6889-6899, April 2024.
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SOH estimation from internal resistance

In this work, we trained a NN for the SOH estimation from the parameter R,.
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Aging-aware equivalent circuit model for SOH estimation in lithium-ion batteries — P Bharadwaj, IEEE Intelec 2024
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EV Safety




EV Safety Standards in India

EV ECOSYSTEM

AIS 038 Rev 1

AIS 038 Rev 2

AlS 039 Rev 1

AIS 040 Rev 1

AlS 041 Rev 1

AIS 049 Rev 1

AIS 156

TRACTION HYBRID

BATTERY VEHICLES

AlS 048 AIS 102 Part 1 IS 17017 AlS 131
AIS 038 Rev 2 AIS 102 Part 2
AlIS 156

REGULATORY STANDARDS FOR BATTERY SAFETY

1.AIS 038 Rev 1 (2015)  Vehicle Safety

2.AIS 048 (2009) Battery Safety
3.AIS 038 Rev 2 (2020) Battery + Vehicle Safety (M&N Category)
4.AIS 156 (2020) Battery + Vehicle Safety (L category)

Fig: Battery safety standards in India

Source:https://evreporter.com/battery-safety-standards-in-india-by-arai/
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Categories of Electric Vehicles & Safety Requirements
o

M&N CATEGORY VEHICLES

cCo g

L CATEGORY VEHICLES

AIS 156 is prepared in-line with AIS 038 Rev 2 is prepared in- line

UN R136 with GTR 20 Phase 1 (UN R100 Rev 3)
Vibration Test Vibration Test
Thermal Shock and Cycling Test Thermal Shock and Cycling Test
Mechanical drop test for Mechanical Shock

removable REESS
Mechanical Integrity

Fire Resistance Fire Resistance
External Short Circuit Protection External Short Circuit Protection
Overcharge Protection Overcharge Protection
‘ Overdischarge Protection Overdischarge Protection
Over-Temperature Protection Over-Temperature Protection
‘ Hydrogen Emission Test Over-Current Protection

Thermal Propagation Test

‘ Hydrogen Emission Test

Source: https://evreporter.com/battery-safety-standards-in-india-by-arai/



Causes of Thermal Runaway

Initiation Events

Heat
Generation

External Causes: Increased
Electrical Abuse Reaction Rate
Mechanical Abuse
Thermal Abuse

Internal Causes:
Defects
Self-Heating Ignition

Temperature
Rise

1Q

Source: Prof Saumyadip Sett’s Guest Lecture on Battery Thermal Management in EV Technology Course, Fall 2023.



Challenges with EV: Fire Safety

Thermal
Runaway Cell affected by

short circuit

Heavy metal particles
present as a dark cloud,
followed by a white
vapour cloud of toxic
flammable gases

Ignition will occur
anywhere between
seconds & minutes of
the white vapour cloud
showing

Video Link

Source:https://www.evfiresafe.com/ev-fire-what-is-thermal-runaway
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https://youtu.be/hwXccpeN6Qc
https://youtu.be/hwXccpeN6Qc
https://youtu.be/hwXccpeN6Qc

Types of Fire

LiB fire is a mixed class fire; conventional agents have no or little effect

LETTER
SYMBOL:

PICTURE
SYMBOL:

FOR
USE ON:

/A

A

ORDINARY COMBUSTIBLES
SUCH AS TRASH, PAPER,
WOOD AND TEXTILES

B

o

FLAMMABLE
LIQUIDS

C,

At

ELECTRICAL
EQUIPMENT

X-

COMBUSTIBLE
METAL

K,

COMBUSTIBLE
COOKING MEDIA

Firefighting media

Clean agent

Has been found successful for smaller
batteries

Achieves reduction in temperature, not
effective for extinguishment

Has shown some success esp. in enclosed
area

The fire class of a LiB fire is contentious due to the various components which make up the
battery; Casing (Class A); separator material, construction material and electrodes (Class D);
flammable liquid, electrolyte (Class B); energized electrical apparatus (Class C)

Source: Firetech HCT Ind Pvt Ltd
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Challenges with EV Fire Safety?

has:

Source: Firetech HCT Ind Pvt Ltd

'‘Unpredictable Fire' because it

Flames

Fire — Large, Medium,
Small

Strong and long flares of
burning gases

Explosions (sudden),
continuous

Smoke, soot

Poisonous, hazardous and
HF gases



EV Fire Progression

An electric Nissan Shuike on charge at a DC unit ignited, destroying four other vehicles.

® Camera 01

Source: https: /voutu be/Bp1z8Q-3JMM,

0.32 Dark cloud of heavy metal particles

0.39 Whistling noise of venting gases

0.44 Lighter vapour cloud above vehicle

0.50 Small vapour cloud explosmn vapour cloud is consumed

https: //www evflresafe com/ev-flre behaviour
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https://www.evfiresafe.com/ev-fire-behaviour
https://youtu.be/Bp1z8Q-3JMM

An Overview of the Safety Strategies for LIBs

Strategies

Active Passive

[ |

Operational safety

‘ Fault safety Inherent safety
|
State estimation a:glg;g;aig?;iiig m;::gmént Equalization Fire supression mgﬁ?&ig;l)n
—— SOC —— Detection PCM — Smothering
—— SOH —— lsolation Cooling | Cooling
— EOL —— Identification —— lsolating
e Active strategy: Estimation & Monitoring -

e Passive strategy: Inherent design modification or fire suppression

Source: Y. Qiu, F. Jiang, A review on passive and active strategies of enhancing the safety of lithium-ion batteries, International Journal of Heat
arnd MMaca Tevanafasr 104 /1ONNDOD) 1DDDNQQ



(Gas Detection

Target gases are selected on the basis of -

Consistenc .
L L Early Presence Leakage Detection
Found in high concentration for ; ; ;
: Found in first venting and Main component of cell
all chemistry and abuse :
g detectable with few seconds? leakage?
conditions?

% o, . o .
Vent gas composition under abuse conditions-

Conditions co, co H, VOCs
Overheating: NMC pOUCh 36.6% 28.4% 22.3% 12.4%
SOC = 100% LCO cylindrical 8% 10% - 2.5%

Nail Penetration:

0 . o .
e LR NMC pouch >2% >2% Detected High intensity
Overcharging: at - o 0 0 0
the end of test LFP cylindrical 47% 4.9% 23% 24%
NMC prismatic 32.3-58.4% 31.7-45.1% - 4.7-9.1%
Cell Leakage )
LCO cylindrical 1.7% - - 44.6%

Experiments conducted in air, VOC: Volatile Organic Components (hydrocarbons like methane, ethane)

Source Cai, T., Valecha, P., Tran, V., Engle, B., Stefanopoulou, A., & Siegel, J. (2021). Detection of Li-ion battery failure and venting with
Carbon Dioxide sensors. ETransportation, 7, 100100.



EV Safety by BMS

* Prevents Thermal 'BATTERY MANAGEMENT SYSTEM
Runway For Electric Vehicles
* Enhancing Batter
. g y - — CURRENT —
Lifespan g = —
. . ' VOLTAGE # -
«  Avoid Overcharging B e s ~
and Overheating e - e
*  Proactive Safety J comnfgpre ﬂ:> d
Alerts -

Thermal management and temperature prediction

In extreme temperatures the safety and life of battery degrades
Thus we must try to predict the temperature so that we can regulate it

Source: https://learn.microsoft.com/en-us/windows/ai/windows-ml/what-is-a-machine-learning-model



Data driven vs Physical models

Data driven models are preferred

over physical models. we
Physical models offer slightly more A
accuracy but "
. . . . Layer 4,
Struggle in real time prediction due / P
to their complexity Layer3,
hidden hidden
Data driven methods are easier to et
implement and use in a wide variety
Training Evaluating
of cases
Extract patterns from data Use patterns to predict
results
e Works best for aging batteries bgs = - O
A
N il
HH e

Figure Source: Sheehan, Sara & Song, Yun. (2016). Deep Learning for Population Genetic Inference. PLOS
Computational Biology. 12. e1004845. 10.1371/journal.pcbi.1004845.



Battery Aging Problem Affects Temperature Prediction Accuracy

[ Last 20% of chronological data
[ First 80% of chronological data

Splitting into training and test set

Testing Set

Training Set

[ Last 20% of chronological data
[[____] First 80% of chronological data

Shuffling

Splitting into training and test set

[T (1]

Training Set

Testing Set

Test set fit

Model inputs
e Time
e Current
e \Voltage

Model Output
e Temperature

Test set fit

25.11 —— Red = Predicted
—— Green = Actual

Temperature
N
H
(=]

24.6
245
0 10 20 30 40 50 60 70
Datapoints
24.8 —— Red = Predicted
—— Green = Actual
24.6
o 24.4
2
© 242
[T}
Q
5 240
23.8
23.6
23‘4 L T T T T T T T T
0 10 20 30 40 50 60 70
Datapoints

Source: P. Sachan and P. Bharadwaj, "Incorporating Uncertainty and Reliability for Battery Temperature Prediction using Machine
Learning Methods," in IEEE Journal of Emerging and Selected Topics in Industrial Electronics, doi: 10.1109/JESTIE.2023.3327052.



Dataset Description

— Four 18650 Lithium-ion batteries were used.

— Profiles were collected for different type of conditions.
« Each profile had the following data

— Time

— Voltage A

—— Ground Truth

- CU rrent o Training Data Observations

Model variance

—— Model estimate

— Temperature

—  Type of profile 4
Uncertainty Quantification

* Reliability in unseen data.

l—li High Epistemic Uncertainty I:I_I

X

\/

* Adaptability to unseen data.
* Worst case scenario awareness. Source: https://everyhue.me/posts/why-uncertainty-matters/

« Safety in alerting users.

Data source: https:/data.nasa.gov/Raw-Data/Randomized-Battery-Usage-2-Room-Temperature-Random/qghr-gkfw/data



Results

» Actual temperature value for the 8
out-of-domain data were inside the
predicted ranges 79% of the time

* For other 21% points the relative
percentage error was 0.34%.

Conformal Prediction Approach

40

38

—— Red = Actual Measured Temperature
Orange = Decision Tree Point Prediction
Green = Conformal Prediction Range

Temperature
w w
N »

w
o

N
©

26

» The average width of prediction was 3 1o

1.07 °C.

Benchmarking

Mean absolute error averaged across
all Batteries (RW9-12): conformal
prediction (CP), linear regression (LR),
decision tree (DT) and random forest

(RF).

Source: P. Sachan and P. Bharadwaj, "Incorporating Uncertainty and Reliability for Battery Temperature Prediction using Machine
Learning Methods," in IEEE Journal of Emerging and Selected Topics in Industrial Electronics, doi: 10.1109/JESTIE.2023.3327052.
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Cycling Profile

Reference Charge
Reference Discharge
Pulsed Load (Rest)
Pulsed Load (Discharge)
Discharge (RW)

Charge (RW)

Pulsed Charge (Rest)
Pulsed Charge (Charge)
Low Current Discharge

Rest Post Low Current Discharge
Rest Post Reference Discharge
Rest Post Pulsed Load/Charge

30 40 50 60
Test Datapoints
CP LR DT RF
0.76 0.55 0.38 0:17
0.28 0.38 1.45 0.60
0.06 0.12 0.31 0.09
0.03 0.04 0.40 0.15
0.03 0.04 0.28 0.10
0.03 0.04 | 0.27 0.10
0.06 0.06 0.13 0.04
0.03 0.03 0.18 0.07
0.72 0.28 0.27 0.33
0.37 0.21 0.14 0.14
0.58 0.89 0.41 0.09
0.26 0.25 0.24 0.10
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Conclusion

Electrical
abuse

)
Mechanical
abuse

Thermal
abuse

Temperature
rise

Gas
production

Thermal Runaway

Temperature
detection

State
estimation

Gas
detection

Using ML

Thermal
management

Early warning
and safe
operation

Energy storage devices like Lithium ion batteries : low tolerance for abuse.

Solved with smart low-cost electronics: real-time health-monitoring + BDT.

Battery digital twins correlate operation to abuse signature: extend life.

Developed tool with real-time electro-thermal-aging diagnosis prevents fires.

Save millions EV users by time-advanced warnings before a fire hazard.
Offset high cost of compliance for AIS 156 and AIS 038 Rev 2.

Support India’s transition to safer and more reliable electric vehicles.

Any Questions are welcome!
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Research Impact

e P Sachan and P. Bharadwaj, "Incorporating Uncertainty and Reliability for Battery
Temperature Prediction Using Machine Learning Methods," in IEEE Journal of
Emerging and Selected Topics in Industrial Electronics, vol. 5, no. 1, pp. 234-241,
Jan. 2024, doi: 10.1109/JESTIE.2023.3327052.

e P Sachan and P. Bharadwaj, “An Adaptive Battery Charging Optimization System”,
Indian Patent Application Number 202421097809, Dec. 2024

e S. Chakraborty, P. Mehta and P. Bharadwaj, "Smart Hybrid Energy Management
System for Green Microgrid with Optimized Energy and Enhanced Voltage Stability,
in IEEE Transactions on Industry Applications, doi: 10.1109/TIA.2025.3571335

e P Sachan and P. Bharadwaj, “Light Machine-Learning based Fast Capacity
Estimation for Low-Cost and Trustworthy Battery Swapping, Manuscript submitted
to IEEE Transactions on Transportation Electrification.
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